Final Exam

» Wed Apr 11 2pm — 5pm Aviva Tennis Centre
» Closed Book
» Format similar to midterm

» Will cover whole course, with emphasis on material after
midterm (maps and hash tables, binary search, loop
Invariants, binary search trees, sorting, graphs)
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Suggested Study Strategy

Review and understand the slides.
Do all of the practice problems provided.

Review all assignments, especially assignments 3 and 4.

YV Y Y VY

Read the textbook, especially where concepts and methods are not
yet clear to you.

A\

Do extra practice problems from the textbook.

» Review the midterm and solutions for practice writing this kind of
exam.

» Practice writing clear, succint pseudocode!
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End of Term Review
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Summary of Topics

1. Maps & Hash Tables
Binary Search & Loop Invariants
Binary Search Trees

Sorting

o1 g B e

Graphs
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Summary of Topics

Maps & Hash Tables
Binary Search & Loop Invariants
Binary Search Trees

Sorting
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Graphs
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Maps

» A map models a searchable collection of key-value
entries

» The main operations of a map are for searching,
Inserting, and deleting items

» Multiple entries with the same key are not allowed

» Applications:

] address book
U student-record database
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Performance of a List-Based Map

» Performance:

O put, get and remove take O(n) time since in the worst case
(the item is not found) we traverse the entire sequence to
look for an item with the given key

» The unsorted list implementation is effective only for
small maps
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Hash Tables

» A hash table is a data structure that can be used to
make map operations faster.

» While worst-case is still O(n), average case is typically
O(1).
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Compression Functions

» Division:
A, (y)=ymod N

O The size N of the hash table is usually chosen to be a prime (on
the assumption that the differences between hash keys y are
less likely to be multiples of primes).

> Multiply, Add and Divide (MAD):
U &, () = [(ay + b) mod p] mod N, where

<> p is a prime number greater than N

<-a and b are integers chosen at random from the interval [0, p — 1],
with a > 0.
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Collision Handling

» Collisions occur when different elements are mapped to
the same cell

» Separate Chaining:

O Let each cell in the table point to a linked list of entries that map
there

O Separate chaining is simple, but requires additional memory
outside the table

0@

R gy 025-612-0001

2@

3| @

MG gy 451-229-0004 gy 981-101-0004
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Open Addressing: Linear Probing

» Open addressing: the colliding » Example:
item is placed in a different cell of 0 h(x)=x mod 13

the table
- : . O Insert keys 18, 41, 22, 44,
» Linear probing handles collisions 59. 32. 31. 73. in this order

by placing the colliding item in the
next (circularly) available table cell

» Each table cell inspected is
referred to as a “probe”
01 23456 789101112
» Colliding items lump together, so
that future collisions cause a longer

sequence of probes
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Open Addressing: Double Hashing

» Double hashing is an alternative open addressing method that uses
a secondary hash function h’(k) in addition to the primary hash
function h(x).

» Suppose that the primary hashing i=h(k) leads to a collision.

» We then iteratively probe the locations
(i +jh'(k)) mod N forj=0, 1,... , N-1

» The secondary hash function #’(k) cannot have zero values
» N s typically chosen to be prime.

» Common choice of secondary hash function h’(k):
d h’(k) = q - kmod g, where
<> qg<N
< qis a prime

» The possible values for h’(k) are
1,2,...,q
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Summary of Topics

1. Maps & Hash Tables
Binary Search & Loop Invariants
Binary Search Trees

Sorting
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Ordered Maps and Dictionaries

> If keys obey a total order relation, can represent a map or
dictionary as an ordered search table stored in an array.

» Can then support a fast find(k) using binary search.
O at each step, the number of candidate items is halved

O terminates after a logarithmic number of steps
O Example: find(7)

006006000600 0600
0006006000000 00
0000000000000
000000000000
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Loop Invariants

» Binary search can be implemented as an iterative
algorithm (it could also be done recursively).

» Loop Invariant: An assertion about the current state
useful for designing, analyzing and proving the
correctness of iterative algorithms.
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Establishing L.oop Invariant

From the Pre-Conditions on the input instance
we must establish the loop invariant.
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Maintain L.oop Invariant
* By Induction the computation will
always be in a safe location. &

- = Vi,S(/)

= V1,S(1)= S(/ +1)
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Ending The Algorithm

> Define Exit Condition

» Termination: With sufficient progress,

the exit condition will be met.

» When we exit, we know
[ exit condition is true

O loop invariant is true
from these we must establish

the post conditions.
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Summary of Topics

1. Maps & Hash Tables

2. Binary Search & Loop Invariants
3. Binary Search Trees
4. Sorting
5. Graphs
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Binary Search Trees

> Insertion

» Deletion

» AVL Trees
» Splay Trees
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Binary Search Tree

All nodes in left subtree < Any node < All nodes in right subtree

55 71
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Search: Define Step
» Cut sub-tree in half.

» Determine which half the key would be in.
» Keep that half.

If key <root, Ifkey=root, Ifkey>root,
then key 1s then key 1s then key 1s
in left half. found in right half.

EECS 2011
XQBSI& ' Prof. J. Elder -22 - Last Updated: 3 April 2018

IIIIIIIIII




Insertion (For Dictionary)

» To perform operation insert(k, 0), we search for key k (using
TreeSearch)

» Suppose k is not already in the tree, and let w be the leaf
reached by the search

» We insert k at node w and expand w into an internal node

» Example: insert 5

EECS 2011
UYQBSK ' Prof. J. Elder -23 - Last Updated: 3 April 2018

IIIIIIIIII




Insertion
» Suppose k is already in the tree, at node v.

» We continue the downward search through v, and let w be
the leaf reached by the search

» Note that it would be correct to go either left or right at v.
We go left by convention.

» We insert k at node w and expand w into an internal node

» Example: insert 6
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Deletion

» To perform operation remove(k), we search for key k
» Suppose key k is in the tree, and let v be the node storing &

» If node v has a leaf child w, we remove v and w from the tree
with operation removeExternal(w), which removes w and its
parent

» Example: remove 4
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Deletion (cont.)

» Now consider the case where the key k to be removed is stored at a
node v whose children are both internal

O we find the internal node w that follows v in an inorder traversal
O we copy the entry stored at w into node v

O we remove node w and its left child z (which must be a leaf) by means of
operation removeExternal(z)

» Example: remove 3

~
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Performance
» Consider a dictionary with n items implemented by means of
a binary search tree of height A

[ the space used is O(n)
O methods find, insert and remove take O(h) time

» The height & is O(n) in the worst case and O(log n) in the
best case

> It is thus worthwhile to balance the tree (next topic)!

ln
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AVL Trees

> AVL trees are balanced.

» An AVL Tree is a binary search tree in which the
heights of siblings can differ by at most 1.

JEe— height
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Insertion

» Imbalance may occur at any ancestor of the inserted node.

height=3 - height =4
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Insertion: Rebalancing Strategy
» Step 1. Search

O Starting at the inserted node, traverse toward
the root until an imbalance is discovered. height=4

~ \

oblem!
/ N\
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Insertion: Rebalancing Strategy
» Step 2: Repair

 The repair strategy is called trinode
restructuring. height = 4

d 3 nodes x, y and z are distinguished:/’
<z = the parent of the high sibling 3
<y = the high sibling
< x = the high child of the high sibling

d We can now think of the subtree
rooted at z as consisting of these 3
nodes plus their 4 subtrees 1
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Insertion: Trinode Restructuring Example

\ Note that y is the middle value.

Restructure

one is h-3 &
one is h-4
\ J
one is h-3 &
one is h-4
EECS 2011
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Removal

» Imbalance may occur at an ancestor of the removed node.

height=3 - height =3

Remove‘8) /
blem!
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Removal: Rebalancing Strategy
» Step 1: Search

[ Starting at the location of the removed node,
traverse toward the root until an imbalance is

discovered.
height =3
blem!
A\
0
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Removal: Rebalancing Strategy
» Step 2: Repair
d We again use trinode restructuring.
1 3 nodes x, y and z are distinguished:
<>z = the parent of the high sibling /
<y = the high sibling

< x = the high child of the high sibling (if
children are equally high, keep chain

i 1
linear) ~ 3
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Removal: Trinode Restructuring - Case 1

\ Note that y is the middle value.

Restructure

\ ] h-2 h-3
| or
h-3orh-3&h- .3
4
\ J
|
h-3 or h-3 & h-
4
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Removal: Rebalancing Strategy

»> Step 2: Repair

O Unfortunately, trinode restructuring may
reduce the height of the subtree, causing
another imbalance further up the tree.

O Thus this search and repair process must
be repeated until we reach the root.
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Splay Trees

» Self-balancing BST
» Invented by Daniel Sleator and Bob Tarjan

» Allows quick access to recently accessed
elements

» Bad: worst-case O(n)
» Good: average (amortized) case O(log n)

» Often perform better than other BSTs in
practice

R. Tarjan
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Splaying

» Splaying is an operation performed on a node that
iteratively moves the node to the root of the tree.

» In splay trees, each BST operation (find, insert, remove)
IS augmented with a splay operation.

» In this way, recently searched and inserted elements are
near the top of the tree, for quick access.
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Z1g-Zig

» Performed when the node x forms a linear chain with its
parent and grandparent.

O i.e., right-right or left-left

Zig-zig

YO RK EECS 2011 . .
.......... ' St ) Bl - 40 - Last Updated: 3 April 2018

IIIIIIIIII




Zig-Zag

» Performed when the node x forms a non-linear chain
with its parent and grandparent

O i.e., right-left or left-right

Zig-zag

YO RK EECS 2011 . .
uuuuuuuuuu ' Prof. J. Elder -41 - Last Updated 3 Aprll 2018

IIIIIIIIII




ZIg
» Performed when the node x has no grandparent

U i.e., its parent is the root
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Summary of Topics

1. Maps & Hash Tables
Binary Search & Loop Invariants
Binary Search Trees

Sorting

ST GRS

Graphs
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Sorting Algorithms

» Comparison Sorting
 Selection Sort
1 Bubble Sort
U Insertion Sort
L Merge Sort
 Heap Sort
O Quick Sort

» Linear Sorting
O Counting Sort
O Radix Sort
d Bucket Sort
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Comparison Sorts

» Comparison Sort algorithms sort the input by successive
comparison of pairs of input elements.

» Comparison Sort algorithms are very general: they
make no assumptions about the values of the input
elements.

4 3 7 112213 5

e.g.,3<11?
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Sorting Algorithms and Memory

» Some algorithms sort by swapping elements within the
Input array

» Such algorithms are said to sort in place, and require
only O(1) additional memory.

» Other algorithms require allocation of an output array
Into which values are copied.

» These algorithms do not sort in place, and require O(n)
additional memory.

o4 3 7 120201 ]3 |5

swap
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Stable Sort

» A sorting algorithm is said to be stable if the ordering of
iIdentical keys in the input is preserved in the output.

» The stable sort property is important, for example, when
entries with identical keys are already ordered by
another criterion.

» (Remember that stored with each key is a record
containing some useful information.)

4 |3 7 1] 221135

1 4 | 5 | 7 |11
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Summary of Comparison Sorts

Best Worst | Average Comments
Case |Case |Case

Selection

Bubble n n?
Insertion  n n?
Merge nlogn nlogn
Heap nlogn nlogn
Quick nlogn n?

YORK ' EECS 2011
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Yes

No

Yes

Yes

- 48 -

Yes

Yes

Yes

No
No

Good if often almost sorted

Good for very large datasets that
require swapping to disk

Best if guaranteed n log n required

Usually fastest in practice
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Comparison Sort: Decision Trees

» For a 3-element array, there are 6 external nodes.

» For an n-element array, there are n! external nodes.

compare A[l] to A[2]
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Comparison Sort

» To store n! external nodes, a decision tree must have a
height of at least [ logn! |

» Worst-case time is equal to the height of the binary
decision tree.

Thus T(n) e Q(Iog n!)

n [n/2|
wherelogn!= > logi> Y log| n/2|e Q(nlogn)
i=1

=1

Thus T(n) e Q(nlogn)

Thus MergeSort & HeapSort are asymptotically optimal.
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Linear Sorts?

Comparison sorts are very general, but are QQ(nlogn)

Faster sorting may be possible if we can constrain the nature of the input.
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CountingSort

mput: [yJolol1]3]1]1]3]1]o]2]1]o]1]1]2]2]1

Output: 1

Index: |0|1(2(3|4|5|6|7|8|9|10[11]12|13|14|15(16/17

N

Location of next record 0|5
with digit v.

Va Lol 1] 2 /| 3
14

Algorithm: Go through the records in order
putting them where they go.
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RadixSort

2|24 1125 .
1125 1134
2125  Is sorted wrt 1143 Is sorted wrt
3125  first1 digits. S|4 first 1+1 digits.
3|33
2|25

1|34 |
3|34 y 2143 These are in the
1143 3lp5  correct order
7143 Sort wrt i+1st 3133 because sorted
344 digit. 3|34 It high order digit
A B
- 3|44
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RadixSort

224 1125
125 1134

Gy

225 Issorted wrt 143 Is sorted wrt
325  first1 digits. 54 first 1+1 digits.
333

2125
134 |
3 34 y 2143 These are in the
1 43 3|5  correct order
7 43  Sort wrt i+1st 3|33  because was sorted &
3 44 digit. 334  stable sort left sorted
i+1 S )

44
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Bucket Sort

isert A[:] into list B[ |n - A[i]]]

A B
I .78 0 |i7%
2 |17 | > 12] —>{17]/
3 1.39 2 | 21| —+>{23] +>{.26|/
4 1.26 3| =+—.39|/
5 172 4 |/
6 .94 5 [
7 .21 6 | —+—>.68|/
8 .12 7 Bl Rl
9 1.23 8 |/
10 .68 9 | —>04|/
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Summary of Topics

1. Maps & Hash Tables
Binary Search & Loop Invariants
Binary Search Trees

Sorting

ol e B e

Graphs
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Graphs

» Definitions & Properties
» Implementations

» Depth-First Search

» Breadth-First Search
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Properties

Property 1 Notation
Y deg(v) =2|E]| ¥l  number of vertices
Proof: each edge is counted [E|  number of edges
twice deg(v) degree of vertex v
Property 2
In an undirected graph with no Example
self-loops and no multiple . V=4
edges s |E|=6
[E| < V] (V] - 1)/2 s deg(v)=3

Proof: each vertex has degree
at most (|V]-1)

Q: What is the bound for a digraph?
A: |E|<|V|(v|-1)
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DFS Algorithm Pattern

DFS(G)
Precondition: G is a graph
Postcondition: all vertices in G have been visited
for each vertex u e V[G] b
color{u] = BLACK //initialize vertex ~\ total work
for each vertex u e V[G] ) = 6(V)
if colorfu] = BLACK //as yet unexplored
DFS-Visit(u)
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DFS Algorithm Pattern

DFS-Visit (u)
Precondition: vertex u is undiscovered
Postcondition: all vertices reachable from u have been processed
colourfu] « RED
for each v e Adj[u] //explore edge (u,v) ]

if color{v] = BLACK | fotal w:;lf ]
DFS-Visit(v) = VEZVI jlv1|=6(E)
colour[u] < GRAY ~

Thus running time = 6(V + E) m
(assuming adjacency list structure)
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Other Variants of Depth-First Search

» The DFS Pattern can also be used to

O Compute a forest of spanning trees (one for each call to DFS-
visit) encoded in a predecessor list 11[u]

(] Label edges in the graph according to their role in the search
(see textbook)

< Tree edges, traversed to an undiscovered vertex

<> . traversed to a descendent vertex on the current
spanning tree

<> Back edges, traversed to an ancestor vertex on the current
spanning tree

<> Cross edges, traversed to a vertex that has already been
discovered, but is not an ancestor or a descendent

EECS 2011
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BFS Algorithm Pattern

BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: all vertices in G reachable from s have been visited
for each vertex u € V[G]
colorfu] « BLACK //initialize vertex
colour[s] « RED
Q.enqueue(s)
while Q # 9
u < Q.dequeue()
for each v € Adj[u] //explore edge (u,Vv)
if color[v] = BLACK
colour[v] « RED
Q.enqueue(v)
colour[u] « GRAY
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Applications

» BFS traversal can be specialized to solve the
following problems in O(|V|+|E]) time:

dCompute the connected components of G
dCompute a spanning forest of G
dFind a simple cycle in G, or report that G is a forest

JGiven two vertices of G, find a path in G between
them with the minimum number of edges, or report
that no such path exists
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Breadth-First Search

Input: Graph & =(V,E) (directed or undirected) and source vertex s V.

Output:
d[v]= shortest path distance &(s,v) from s to v, Vv eV.
z[v] = u such that (v,v) is last edge on a shortest path from s to v.

> l|ldea: send out search ‘wave’ from s.

» Keep track of progress by colouring vertices:
O Undiscovered vertices are coloured black
O Just discovered vertices (on the wavefront) are coloured red.

O Previously discovered vertices (behind wavefront) are coloured grey.
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Breadth-First Search Algorithm: Properties
BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: d[u] = shortest distance d[u] and
n[u] = predecessor of u on shortest paths from s to each vertex u in G
for each vertex u e V[G]

d[u] « oo .

2u] null » Qis a FIFO queue.

color[u] = BLACK //initialize vertex > Each vertex assigned finite d
colours] < RED value at most once.
d[s]<0
Q.enqueue(s) » Q@ contains vertices with d
while Q # @ values {i, ..., i, i+1, ..., i+1}

u < Q.dequeue()
for each v € Adj[u] //explore edge (u,V)
if color[v] = BLACK

» d values assigned are
monotonically increasing over

colour[v] < RED time.
d[v] <« d[u]+1
nlv]«<u
Q.enqueue(v)
colour[u]l < GRAY
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Summary of Topics

1. Maps & Hash Tables

2. Binary Search & Loop Invariants
3. Binary Search Trees
4. Sorting
5. Graphs
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