Final Exam

- Wed Apr 11 2pm 5pm Aviva Tennis Centre
- Closed Book
- Format similar to midterm
- Will cover whole course, with emphasis on material after midterm (maps and hash tables, binary search, loop invariants, binary search trees, sorting, graphs)

Suggested Study Strategy

- Review and understand the slides.
- Do all of the practice problems provided.
- Review all assignments, especially assignments 3 and 4.
- Read the textbook, especially where concepts and methods are not yet clear to you.
- Do extra practice problems from the textbook.
- Review the midterm and solutions for practice writing this kind of exam.
- Practice writing clear, succint pseudocode!

End of Term Review

Summary of Topics

- 1. Maps & Hash Tables
- 2. Binary Search & Loop Invariants
- 3. Binary Search Trees
- 4. Sorting
- 5. Graphs

Summary of Topics

- 1. Maps & Hash Tables
- 2. Binary Search & Loop Invariants
- 3. Binary Search Trees
- 4. Sorting
- 5. Graphs

Maps

- A map models a searchable collection of key-value entries
- The main operations of a map are for searching, inserting, and deleting items
- Multiple entries with the same key are not allowed
- > Applications:
 - address book
 - student-record database

Performance of a List-Based Map

- Performance:
 - \square put, get and remove take O(n) time since in the worst case (the item is not found) we traverse the entire sequence to look for an item with the given key
- The unsorted list implementation is effective only for small maps

Hash Tables

- ➤ A hash table is a data structure that can be used to make map operations faster.
- ➤ While worst-case is still O(n), average case is typically O(1).

Compression Functions

> Division:

- $\square h_2(y) = y \bmod N$
- ☐ The size *N* of the hash table is usually chosen to be a prime (on the assumption that the differences between hash keys *y* are less likely to be multiples of primes).
- Multiply, Add and Divide (MAD):
 - $\square h_2(y) = [(ay + b) \mod p] \mod N$, where
 - ♦ p is a prime number greater than N
 - \Rightarrow a and b are integers chosen at random from the interval [0, p 1], with a > 0.

- 9 -

Collision Handling

- Collisions occur when different elements are mapped to the same cell
- Separate Chaining:
 - Let each cell in the table point to a linked list of entries that map there
 - □ Separate chaining is simple, but requires additional memory outside the table

Open Addressing: Linear Probing

- Open addressing: the colliding item is placed in a different cell of the table
- Linear probing handles collisions by placing the colliding item in the next (circularly) available table cell
- Each table cell inspected is referred to as a "probe"
- Colliding items lump together, so that future collisions cause a longer sequence of probes

- Example:
 - \square $h(x) = x \mod 13$
 - ☐ Insert keys 18, 41, 22, 44, 59, 32, 31, 73, in this order

Open Addressing: Double Hashing

- Double hashing is an alternative open addressing method that uses a secondary hash function h'(k) in addition to the primary hash function h(x).
- Suppose that the primary hashing i=h(k) leads to a collision.
- We then iteratively probe the locations $(i + jh'(k)) \mod N$ for j = 0, 1, ..., N 1
- \triangleright The secondary hash function h'(k) cannot have zero values
- N is typically chosen to be prime.
- Common choice of secondary hash function h'(k):
 - □ $h'(k) = q k \mod q$, where $\Leftrightarrow q < N$ $\Leftrightarrow q$ is a prime
- The possible values for h'(k) are 1, 2, ..., q

Summary of Topics

- 1. Maps & Hash Tables
- 2. Binary Search & Loop Invariants
- 3. Binary Search Trees
- 4. Sorting
- 5. Graphs

Ordered Maps and Dictionaries

- ➤ If keys obey a total order relation, can represent a map or dictionary as an ordered search table stored in an array.
- Can then support a fast find(k) using binary search.
 - ☐ at each step, the number of candidate items is halved
 - ☐ terminates after a logarithmic number of steps
 - ☐ Example: find(7)

Loop Invariants

- Binary search can be implemented as an iterative algorithm (it could also be done recursively).
- ➤ Loop Invariant: An assertion about the current state useful for designing, analyzing and proving the correctness of iterative algorithms.

Establishing Loop Invariant

From the Pre-Conditions on the input instance we must establish the loop invariant.

Maintain Loop Invariant

• By <u>Induction</u> the computation will always be in a safe location.

Ending The Algorithm

Define Exit Condition

Termination: With sufficient progress, the exit condition will be met.

- When we exit, we know
 - exit condition is true
 - □ loop invariant is true from these we must establish the post conditions.

Summary of Topics

- 1. Maps & Hash Tables
- 2. Binary Search & Loop Invariants
- 3. Binary Search Trees
- 4. Sorting
- 5. Graphs

Binary Search Trees

- > Insertion
- Deletion
- > AVL Trees
- Splay Trees

Binary Search Tree

All nodes in left subtree ≤ Any node ≤ All nodes in right subtree

Search: Define Step

- Cut sub-tree in half.
- Determine which half the key would be in.

Keep that half.

If key < root, then key is in left half. If key = root, then key is found

If key > root, then key is in right half.

Insertion (For Dictionary)

- To perform operation insert(k, o), we search for key k (using TreeSearch)
- Suppose k is not already in the tree, and let w be the leaf reached by the search
- We insert k at node w and expand w into an internal node
- Example: insert 5

Insertion

- Suppose k is already in the tree, at node v.
- We continue the downward search through v, and let w be the leaf reached by the search
- Note that it would be correct to go either left or right at v. We go left by convention.
- We insert k at node w and expand w into an internal node
- > Example: insert 6

Prof. J. Elder

Deletion

- \triangleright To perform operation remove(k), we search for key k
- \triangleright Suppose key k is in the tree, and let v be the node storing k
- ▶ If node v has a leaf child w, we remove v and w from the tree with operation removeExternal(w), which removes w and its parent
- > Example: remove 4

Deletion (cont.)

- Now consider the case where the key k to be removed is stored at a node v whose children are both internal
 - \square we find the internal node w that follows v in an inorder traversal
 - \square we copy the entry stored at w into node v
 - \square we remove node w and its left child z (which must be a leaf) by means of operation removeExternal(z)
- Example: remove 3

Performance

- Consider a dictionary with n items implemented by means of a binary search tree of height h
 - \Box the space used is O(n)
 - \square methods find, insert and remove take O(h) time
- The height h is O(n) in the worst case and $O(\log n)$ in the best case
- It is thus worthwhile to balance the tree (next topic)!

AVL Trees

- > AVL trees are balanced.
- ➤ An AVL Tree is a **binary search tree** in which the heights of siblings can differ by at most 1.

Insertion

Imbalance may occur at any ancestor of the inserted node.

Insertion: Rebalancing Strategy

- 30 -

➤ Step 1: Search

☐ Starting at the inserted node, traverse toward the root until an imbalance is discovered.

Insertion: Rebalancing Strategy

➤ Step 2: Repair

☐ The repair strategy is called **trinode** restructuring.

□ 3 nodes x, y and z are distinguished:

♦ y = the high sibling

 \Rightarrow x = the high child of the high sibling

□ We can now think of the subtree rooted at z as consisting of these 3 nodes plus their 4 subtrees

Insertion: Trinode Restructuring Example

Prof. J. Elder

Removal

Imbalance may occur at an ancestor of the removed node.

Removal: Rebalancing Strategy

- ➤ Step 1: Search
 - ☐ Starting at the location of the removed node, traverse toward the root until an imbalance is discovered.

Removal: Rebalancing Strategy

- ➤ Step 2: Repair
 - ☐ We again use **trinode restructuring**.
 - □ 3 nodes x, y and z are distinguished:

 - x = the high child of the high sibling (if children are equally high, keep chain linear)

Removal: Trinode Restructuring - Case 1

Prof. J. Elder

Removal: Rebalancing Strategy

- > Step 2: Repair
 - Unfortunately, trinode restructuring may reduce the height of the subtree, causing another imbalance further up the tree.
 - ☐ Thus this search and repair process must be repeated until we reach the root.

Splay Trees

- Self-balancing BST
- Invented by Daniel Sleator and Bob Tarjan
- Allows quick access to recently accessed elements
- Bad: worst-case O(n)
- Good: average (amortized) case O(log n)
- Often perform better than other BSTs in practice

D. Sleator

R. Tarjan

Splaying

- Splaying is an operation performed on a node that iteratively moves the node to the root of the tree.
- ➤ In splay trees, each BST operation (find, insert, remove) is augmented with a splay operation.
- In this way, recently searched and inserted elements are near the top of the tree, for quick access.

Zig-Zig

- Performed when the node x forms a linear chain with its parent and grandparent.
 - □ i.e., right-right or left-left

Zig-Zag

- Performed when the node x forms a non-linear chain with its parent and grandparent
 - □ i.e., right-left or left-right

Zig

- Performed when the node x has no grandparent
 - ☐ i.e., its parent is the root

Summary of Topics

- 1. Maps & Hash Tables
- 2. Binary Search & Loop Invariants
- 3. Binary Search Trees
- 4. Sorting
- 5. Graphs

Sorting Algorithms

- 44 -

- Comparison Sorting
 - ☐ Selection Sort
 - ☐ Bubble Sort
 - ☐ Insertion Sort
 - Merge Sort
 - ☐ Heap Sort
 - ☐ Quick Sort
- Linear Sorting
 - ☐ Counting Sort
 - ☐ Radix Sort
 - □ Bucket Sort

Comparison Sorts

- Comparison Sort algorithms sort the input by successive comparison of pairs of input elements.
- Comparison Sort algorithms are very general: they make no assumptions about the values of the input elements.

Sorting Algorithms and Memory

- Some algorithms sort by swapping elements within the input array
- Such algorithms are said to sort in place, and require only O(1) additional memory.
- Other algorithms require allocation of an output array into which values are copied.
- These algorithms do not sort in place, and require O(n) additional memory.

Stable Sort

- ➤ A sorting algorithm is said to be **stable** if the ordering of identical keys in the input is preserved in the output.
- ➤ The stable sort property is important, for example, when entries with identical keys are already ordered by another criterion.
- (Remember that stored with each key is a record containing some useful information.)

Summary of Comparison Sorts

Algorithm	Best Case	Worst Case	Average Case	In Place	Stable	Comments
Selection	n ²	n ²		Yes	Yes	
Bubble	n	n ²		Yes	Yes	
Insertion	n	n ²		Yes	Yes	Good if often almost sorted
Merge	n log n	n log n		No	Yes	Good for very large datasets that require swapping to disk
Heap	n log n	n log n		Yes	No	Best if guaranteed n log n required
Quick	n log n	n ²	n log n	Yes	No	Usually fastest in practice

Comparison Sort: Decision Trees

- For a 3-element array, there are 6 external nodes.
- For an n-element array, there are n! external nodes.

Comparison Sort

- ➤ To store n! external nodes, a decision tree must have a height of at least \[log n! \]
- Worst-case time is equal to the height of the binary decision tree.

Thus
$$T(n) \in \Omega(\log n!)$$

where
$$\log n! = \sum_{i=1}^{n} \log i \ge \sum_{i=1}^{\lfloor n/2 \rfloor} \log \lfloor n/2 \rfloor \in \Omega(n \log n)$$

Thus $T(n) \in \Omega(n \log n)$

Thus MergeSort & HeapSort are asymptotically optimal.

Linear Sorts?

Comparison sorts are very general, but are $\Omega(n \log n)$

Faster sorting may be possible if we can constrain the nature of the input.

CountingSort

Algorithm: Go through the records in order putting them where they go.

RadixSort

RadixSort

43

25

33

34

Is sorted wrt first i+1 digits.

These are in the correct order because was sorted & stable sort left sorted

Bucket Sort

insert A[i] into list $B[\lfloor n \cdot A[i] \rfloor]$

Summary of Topics

- 56 -

- 1. Maps & Hash Tables
- 2. Binary Search & Loop Invariants
- 3. Binary Search Trees
- 4. Sorting
- 5. Graphs

Graphs

- Definitions & Properties
- Implementations
- Depth-First Search
- Breadth-First Search

Properties

Property 1

$\sum_{v} \deg(v) = 2|E|$

Proof: each edge is counted twice

Property 2

In an undirected graph with no self-loops and no multiple edges

$$|E| \le |V| (|V| - 1)/2$$

Proof: each vertex has degree at most (|V| - 1)

Q: What is the bound for a digraph?

A:
$$|E| \le |V| (|V| - 1)$$

YORK EECS 2011 Prof. J. Elder

Notation

|V|

|E|

numbor /

deg(v)

number of edges degree of vertex *v*

number of vertices

- |V| = 4
- $\blacksquare \quad |E| = 6$
- $\bullet \quad \deg(\mathbf{v}) = 3$

DFS Algorithm Pattern

```
DFS(G)
```

Precondition: G is a graph

Postcondition: all vertices in G have been visited

for each vertex $u \in V[G]$ color[u] = BLACK //initialize vertex for each vertex $u \in V[G]$ if color[u] = BLACK //as yet unexplored DFS-Visit(u)

total work $= \theta(V)$

DFS Algorithm Pattern

DFS-Visit (u)

Precondition: vertex u is undiscovered

Postcondition: all vertices reachable from u have been processed

```
colour[u] \leftarrow RED

for each v \in \text{Adj}[u] //explore edge (u,v)

if color[v] = BLACK

DFS-Visit(v)
colour[u] \leftarrow GRAY
total work
= \sum_{v \in V} |Adj[v]| = \theta(E)
```

Thus running time = $\theta(V + E)$ (assuming adjacency list structure)

Other Variants of Depth-First Search

- > The DFS Pattern can also be used to
 - Compute a forest of spanning trees (one for each call to DFS-visit) encoded in a predecessor list π[u]
 - Label edges in the graph according to their role in the search (see textbook)
 - ♦ Tree edges, traversed to an undiscovered vertex
 - Forward edges, traversed to a descendent vertex on the current spanning tree
 - ♦ Back edges, traversed to an ancestor vertex on the current spanning tree
 - Cross edges, traversed to a vertex that has already been discovered, but is not an ancestor or a descendent

BFS Algorithm Pattern

```
BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: all vertices in G reachable from s have been visited
        for each vertex u \in V[G]
               color[u] ← BLACK //initialize vertex
        colour[s] \leftarrow RED
        Q.enqueue(s)
        while Q \neq \emptyset
               u \leftarrow Q.dequeue()
                for each v \in Adj[u] //explore edge (u,v)
                       if color[v] = BLACK
                               colour[v] \leftarrow RED
                               Q.enqueue(v)
               colour[u] \leftarrow GRAY
```


Applications

- \triangleright BFS traversal can be specialized to solve the following problems in O(|V|+|E|) time:
 - □ Compute the connected components of *G*
 - □ Compute a spanning forest of *G*
 - \Box Find a simple cycle in G, or report that G is a forest
 - □ Given two vertices of *G*, find a path in *G* between them with the minimum number of edges, or report that no such path exists

Breadth-First Search

Input: Graph G = (V, E) (directed or undirected) and source vertex $s \in V$.

Output:

```
d[v] = shortest path distance \delta(s,v) from s to v, \forall v \in V.
```

 $\pi[v] = u$ such that (u,v) is last edge on a shortest path from s to v.

- Idea: send out search 'wave' from s.
- Keep track of progress by colouring vertices:
 - Undiscovered vertices are coloured black
 - ☐ Just discovered vertices (on the wavefront) are coloured red.
 - ☐ Previously discovered vertices (behind wavefront) are coloured grey.

Breadth-First Search Algorithm: Properties

```
BFS(G,s)
Precondition: G is a graph, s is a vertex in G
Postcondition: d[u] = shortest distance \delta[u] and
\pi[u] = predecessor of u on shortest paths from s to each vertex u in G
         for each vertex u \in V[G]
                 d[u] \leftarrow \infty
                 \pi[u] \leftarrow \text{null}
                 color[u] = BLACK //initialize vertex
         colour[s] \leftarrow RED
        d[s] \leftarrow 0
         Q.enqueue(s)
         while Q \neq \emptyset
                 u \leftarrow Q.dequeue()
                 for each v \in Adi[u] //explore edge (u,v)
                          if color[v] = BLACK
                                  colour[v] \leftarrow RED
                                   d[v] \leftarrow d[u] + 1
                                   \pi[v] \leftarrow u
                                  Q.enqueue(v)
                 colour[u] \leftarrow GRAY
```

- Q is a FIFO queue.
- Each vertex assigned finite d value at most once.
- Q contains vertices with d values {i, ..., i, i+1, ..., i+1}
- d values assigned are monotonically increasing over time.

EECS 2011 Prof. J. Elder

Summary of Topics

- 1. Maps & Hash Tables
- 2. Binary Search & Loop Invariants
- 3. Binary Search Trees
- 4. Sorting
- 5. Graphs

